Integral variational problems

Alexis F. Vasseur University of Texas at Austin

with L. Caffarelli and Ch.H. Chan

Incompressible Fluids, Turbulence and Mixing In honor of Peter Constantin's 60th birthday

Table of contents

Integral operators

- Introduction
- Fractional Laplacian
- The half Laplacian
- A semilinear example: The Surface Quasi Geostrophic equation
- 2 De Giorgi method for SQG
 - The result
 - Energy inequality
 - Oscillation lemma
- 3 The nonlinear case
 - The problem
 - The result

Introduction

Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

・ロト ・回ト ・ヨト ・ヨト

Э

General form

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} \psi(\theta(t,y) - \theta(t,x)) \mathcal{K}(t,x,y) dy = 0.$$
 (1)

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

イロン イヨン イヨン イヨン

3

General form

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} \psi(\theta(t,y) - \theta(t,x)) K(t,x,y) dy = 0.$$
 (1)

We can consider also the equation with (linear or nonlinear) right hand side terms

$$\partial_t \theta(t, x) + v \cdot \nabla \theta(t, x) - \int_{\mathbb{R}^N} \psi(\theta(t, y) - \theta(t, x)) K(t, x, y) dy = f(t, x).$$
(2)

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

・ロン ・回と ・ヨン ・ヨン

General form

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} \psi(\theta(t,y) - \theta(t,x)) \mathcal{K}(t,x,y) dy = 0.$$
 (1)

We can consider also the equation with (linear or nonlinear) right hand side terms

$$\partial_t \theta(t, x) + v \cdot \nabla \theta(t, x) - \int_{\mathbb{R}^N} \psi(\theta(t, y) - \theta(t, x)) K(t, x, y) dy = f(t, x).$$
(2)

Main Hypothesis on the kernel K:

• symmetry: K(t, x, y) = K(t, y, x).

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

General form

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} \psi(\theta(t,y) - \theta(t,x)) \mathcal{K}(t,x,y) dy = 0.$$
 (1)

We can consider also the equation with (linear or nonlinear) right hand side terms

$$\partial_t \theta(t, x) + v \cdot \nabla \theta(t, x) - \int_{\mathbb{R}^N} \psi(\theta(t, y) - \theta(t, x)) K(t, x, y) dy = f(t, x).$$
(2)

Main Hypothesis on the kernel K:

- symmetry: K(t, x, y) = K(t, y, x).
- *K* is singular enough for *x* = *y*. This implies some regularization effects.

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

・ロト ・回ト ・ヨト ・ヨト

Probabilistic interpretation

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} (\theta(t,y) - \theta(t,x)) K(x,y) dy = 0.$$

Corresponds to dynamic including jumps from x to y with probability K(t, x, y).

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Probabilistic interpretation

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} (\theta(t,y) - \theta(t,x)) K(x,y) dy = 0.$$

Corresponds to dynamic including jumps from x to y with probability K(t, x, y).

Typical example: Levy processes which correspond to fractional Laplacian:

$$\partial_t \theta(t,x) - \Delta^{s/2} \theta(t,x) = 0.$$

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

イロト イポト イヨト イヨト

Probabilistic interpretation

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} (\theta(t,y) - \theta(t,x)) K(x,y) dy = 0.$$

Corresponds to dynamic including jumps from x to y with probability K(t, x, y).

Typical example: Levy processes which correspond to fractional Laplacian:

$$\partial_t \theta(t,x) - \Delta^{s/2} \theta(t,x) = 0.$$

Same equation with

$$K_{s}(x,y)=\frac{2-s}{|x-y|^{s+N}}.$$

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

イロン イヨン イヨン イヨン

æ

General comments

• They are "kinetic-like" operators.

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

General comments

- They are "kinetic-like" operators.
- For the linear case, it corresponds to a sort of BGK model.

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} (\theta(t,y) - \theta(t,x)) K(x,y) dy = 0.$$
 (3)

• But with a singular kernel (in the flavor of the Boltzmann equation with grazing collisions).

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

・ロン ・回と ・ヨン・

General comments

- They are "kinetic-like" operators.
- For the linear case, it corresponds to a sort of BGK model.

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} (\theta(t,y) - \theta(t,x)) K(x,y) dy = 0.$$
 (3)

- But with a singular kernel (in the flavor of the Boltzmann equation with grazing collisions).
- Because of this singular kernel, the equation behaves more like a parabolic equation (regularization effect).

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

イロト イポト イヨト イヨト

General comments

- They are "kinetic-like" operators.
- For the linear case, it corresponds to a sort of BGK model.

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} (\theta(t,y) - \theta(t,x)) K(x,y) dy = 0.$$
 (3)

- But with a singular kernel (in the flavor of the Boltzmann equation with grazing collisions).
- Because of this singular kernel, the equation behaves more like a parabolic equation (regularization effect).
- Except that the operator is nonlocal: The knowledge of the θ on a neighborhood of x is not enough to compute the operator at the point x.

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Passive transport in a turbulent flow

Fractional Laplacian used, for instance, to model passive transport in a turbulent flow (anomalous diffusion):

$$\partial_t \theta + \mathbf{v} \cdot \nabla \theta - \Delta^{s/2} \theta = 0.$$

Figure: Passive transport in a turbulent flow

Introduction Fractional Laplacian **The half Laplacian** A semilinear example: The Surface Quasi Geostrophic equation

2D projection

The half Laplacian $\Delta^{1/2}$ corresponds to the "Dirichlet to Neumann" map.

Figure: 2D projection

It is used for modeling in different situation (Dislocation dynamics, Surface Quasi-Geostrophic equation...)

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Surface Quasi Geostrophic equation

We consider the potential temperature function $\theta : \mathbb{R}^2 \to \mathbb{R}$ at the surface of the earth.

$$\partial_t \theta + u \cdot \nabla \theta = \Delta^{1/2} \theta,$$

 $u = R^{\perp} \theta.$

$$R^{\perp}\theta = (R_2\theta, -R_1\theta)$$

where:

$$\widehat{R_i\theta} = \frac{\xi_i}{|\xi|}\widehat{\theta}.$$

Note
$$\operatorname{div} u = 0$$
 (incompressibility)

Alexis F. Vasseur University of Texas at Austin .. with L. Caf

Integral variational problems

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Surface Quasi Geostrophic equation

We consider the potential temperature function $\theta : \mathbb{R}^2 \to \mathbb{R}$ at the surface of the earth.

$$\partial_t \theta + \mathbf{u} \cdot \nabla \theta = \Delta^{1/2} \theta,$$
$$\mathbf{u} = \mathbf{R}^{\perp} \theta.$$

$$R^{\perp} heta = (R_2 heta, -R_1 heta)$$
 where:

$$\widehat{R_i\theta} = \frac{\xi_i}{|\xi|}\widehat{\theta}.$$

Note $\operatorname{div} u = 0$ (incompressibility).

Alexis F. Vasseur University of Texas at Austin .. with L. Caf

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Surface Quasi Geostrophic equation

We consider the potential temperature function $\theta : \mathbb{R}^2 \to \mathbb{R}$ at the surface of the earth.

$$\partial_t \theta + u \cdot \nabla \theta = \Delta^{1/2} \theta,$$

 $u = R^{\perp} \theta.$

$$R^{\perp}\theta = (R_2\theta, -R_1\theta)$$

where:

$$\widehat{R_i\theta} = \frac{\xi_i}{|\xi|}\widehat{\theta}.$$

Note
$$\operatorname{div} u = 0$$
 (incompressibility)

Alexis F. Vasseur University of Texas at Austin .. with L. Caf

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Surface Quasi Geostrophic equation

We consider the potential temperature function $\theta : \mathbb{R}^2 \to \mathbb{R}$ at the surface of the earth.

$$\partial_t \theta + u \cdot \nabla \theta = \Delta^{1/2} \theta,$$

$$u = R^{\perp} \theta.$$

$$R^{\perp}\theta = (R_2\theta, -R_1\theta)$$

where:

$$\widehat{R_j\theta} = \frac{i\xi_j}{|\xi|}\widehat{\theta}.$$

Note $\operatorname{div} u = 0$ (incompressibility).

Alexis F. Vasseur University of Texas at Austin .. with L. Caf

E: .

Integral variational problems

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Surface Quasi Geostrophic equation

We consider the potential temperature function $\theta : \mathbb{R}^2 \to \mathbb{R}$ at the surface of the earth.

$$\partial_t \theta + u \cdot \nabla \theta = \mathbf{\Delta}^{1/2} \theta,$$
$$u = R^{\perp} \theta.$$

$$R^{\perp} heta=(R_2 heta,-R_1 heta)$$
 where:

$$\widehat{R_i\theta} = \frac{\xi_i}{|\xi|}\widehat{\theta}.$$

Note $\operatorname{div} u = 0$ (incompressibility).

Alexis F. Vasseur University of Texas at Austin .. with L. Caf

Introduction Fractional Laplacian The half Laplacian A semilinear example: The Surface Quasi Geostrophic equation

Citations

- Anomalous diffusion:
 - Fractal Burgers (Growing interfaces): Woyczynski, Meleard Jourdain,

Karch, Kiselev Nazarov Shterenberg, Alibaud Droniou Vovelle Imbert Gallouet, Chan Czuback...

- Fisher KPP (Biology): Cabre Roquefoffre
- Surface quasi-geostrophic: Constantin majda Tabak, Resnick, Constantin Wu,

Cordoba Cordoba, Rodrigo, Kiselev Nazarov Volberg, Carillo, Schonbek & Schonbek...

• Dislocation dynamics: Monneau,

Chasseigne Imbert, Barles...

The result Energy inequality Oscillation lemma

The main result

Theorem

(Caffarelli, V.) Let $\theta_0 \in L^2(\mathbb{R}^2)$. Then for every $t_0 > 0$, θ lies in $C^{\infty}((t_0, \infty) \times \mathbb{R}^2)$.

- based on the De Giorgi method for regularity of solutions of elliptic equations.
- A different proof was found independently by Kiselev, Nazarov and Volberg.
- An interesting new proof proposed recently by Constantin and Vicol.

The result Energy inequality Oscillation lemma

イロン イヨン イヨン イヨン

3

Main steps

- L^2 (bounded energy) to L^{∞} (uniformly bounded).
- L^{∞} (uniformly bounded) to C^{α} (modulus of continuity).

The result Energy inequality Oscillation lemma

・ロン ・回 と ・ ヨ と ・ ヨ と

э

Main steps

- L^2 (bounded energy) to L^{∞} (uniformly bounded).
- L^{∞} (uniformly bounded) to C^{α} (modulus of continuity).

We can then obtain full regularity with standard methods (potential theory and bootstrapping).

The result Energy inequality Oscillation lemma

・ロン ・回 と ・ヨン ・ヨン

э

Energy inequalities

We can construct solutions which verify the energy inequality (see Resnick):

$$\partial_t \int \theta^2 \, dx + 2 \int |\Delta^{1/4} \theta|^2 \, dx \leq 0.$$

The result Energy inequality Oscillation lemma

Energy inequalities

We can construct solutions which verify the energy inequality (see Resnick):

$$\partial_t \int \theta^2 \, dx + 2 \int |\Delta^{1/4} \theta|^2 \, dx \leq 0.$$

Indeed, we can derive such a inequality for all the truncations (see Cordoba and Cordoba)

$$\theta_k = (\theta - C_k)_+.$$

We have:

$$\partial_t \int heta_k^2 dx + 2 \int |\Delta^{1/4} heta_k|^2 dx \leq 0.$$

э

The result Energy inequality Oscillation lemma

L^{∞} bounds

Figure: L^{∞} bounds

・ロン ・四 と ・ ヨ と ・ モ と

Э

The result Energy inequality Oscillation lemma

L^{∞} bounds

We want to show that $\theta < M$ (*M* depending on t_0 and U_0)

Figure: L^{∞} bounds

・ロト ・回ト ・ヨト ・ヨト

3

The result Energy inequality Oscillation lemma

L^{∞} bounds

We construct a sequence of C_k converging to M.

Figure: L^{∞} bounds

・ロト ・回ト ・ヨト ・ヨト

3

The result Energy inequality Oscillation lemma

L^{∞} bounds

We consider U_k "Energy/dissipation of energy" at the level set k.

Figure: L^{∞} bounds

・ロト ・回ト ・ヨト ・ヨト

æ

The result Energy inequality Oscillation lemma

L^{∞} bounds

$$U_k \leq \frac{C^k}{Mt_0^N} U_{k-1}^\beta, \qquad \beta > 1.$$

(Sobolev, Chebychev inequality)

Э

The result Energy inequality Oscillation lemma

L^{∞} bounds

Figure: L^{∞} bounds

イロン イロン イヨン イヨン

Э

The result Energy inequality Oscillation lemma

From Riesz transform we have

 $u \in L^{\infty}_t(BMO_x).$

We consider the LINEAR equation:

$$\partial_t \theta + \mathbf{v} \cdot \nabla \theta = \Delta^{1/2} \theta,$$

div $\mathbf{v} = 0, \qquad \mathbf{v} \in L^\infty_t(BMO_x).$

- Competition between random walks and deterministic transport.
- Δ^{1/2}: Fractional Laplacian associated to random walks with jumps (Levy processes).

소리가 소문가 소문가 소문가

• Critical case: Half Laplacian.

The result Energy inequality Oscillation lemma

Main result

Theorem

(Caffarelli,V.) Let $\theta_0 \in L^2(\mathbb{R}^N)$. Then for every $t_0 > 0$, θ lies in $C^{\alpha}((t_0, \infty) \times \mathbb{R}^N)$ for a $\alpha > 0$.

Remark: Kiselev Nazarov gave an other proof based on duality arguments.

- use a lemma based on the L^∞ norm
- applied recursively on blow-ups of θ :

$$\tilde{\theta}(t,x) = \lambda \theta(\varepsilon t, \varepsilon x).$$

The result Energy inequality Oscillation lemma

Local energy inequality

- C^{α} regularity is a LOCAL property.
- We need a local version (in x and t) of the energy equality on the truncation θ_k .
- We may use the extension of θ with a new variable z > 0 to keep memory of the non locality of the diffusion term.

The result Energy inequality Oscillation lemma

New energy estimate

$$\sup_{-1\leq t\leq 0} \left(\int_{B_1} \theta_k^2 \, dx \right) + \int_{-1}^0 \int_{B_1} \int_0^1 |\nabla \overline{\theta}_k|^2 \, dz \, dx \, dt$$
$$\leq C_p \left(\int_{-2}^0 \int_{B_2} \theta_k^p \, dx \, dt + \int_{-2}^0 \int_{B_2} \int_0^2 \overline{\theta}_k^2 \, dx \, dt \right).$$

- We have localized energy estimate in t, x, z
- But it gives only some partial knowledge on the boundary z = 0. It is degenerated !!

The problem The result

The Equation

We consider the following nonlinear integral operator:

$$\partial_t \theta(t,x) - \int_{\mathbb{R}^N} \phi'(\theta(t,y) - \theta(t,x)) K(y-x) dy = 0,$$

Where ϕ is strictly convex and K is comparable with a fractional Laplacian:

$$\mathcal{K}(-x) = \mathcal{K}(x),$$

 $rac{\Lambda^{-1}}{|x|^{N+s}} \leq \mathcal{K}(x) \leq rac{\Lambda}{|x|^{N+s}}.$

$$\Lambda^{-1} \le \phi''(x) \le \Lambda.$$

This model appears in the phase transition literature and on issues of image processing (Giacomin Lebowitz Presutti, Gilboa Osher).

The problem The result

Variational problem

This is the Euler-Lagrange equation for the variational integral

$$\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\phi(\theta(y)-\theta(x))\mathcal{K}(y-x)dydx.$$

イロン イロン イヨン イヨン

Э

The problem The result

The result

Theorem

(Caffarelli, Chan, V.) For any initial datum $\theta_0 \in H^1(\mathbb{R}^N)$, there exists a global classical solution to the problem with $\theta(0, \cdot) = \theta_0$ in the $L^2(\mathbb{R}^N)$ sense. Moreover $\nabla_x \theta \in C^{\alpha}((t_0, \infty) \times \mathbb{R}^N)$ for any $t_0 > 0$.

The solution is $C^{1,\alpha}$ in x.

The problem The result

Linear problem

we consider $w = D_e \theta$. It is solution to

$$\partial_t w - \int_{\mathbb{R}^N} \{w(y) - w(x)\} K(t, x, y) dz = 0.$$

with

$$K(t, x, y) = \phi''(\theta(y) - \theta(x))K(y - x).$$

- K is uniformly comparable to $\Delta^{s/2}$.
- But we CANNOT localize via an extension operator anymore.

э

• We have to stay GLOBAL.

The problem The result

Nonlinear case

Figure: Nonlinear case

・ロト ・回ト ・モト ・モト

3

The problem The result

Nonlinear case

Figure: Nonlinear case

・ロト ・回ト ・モト ・モト

citations

- elliptic case: proved by Kassman, Kassman and Bass.
- Regularity theory for related models:
 - Very nonlinear integral operators: Caffarelli silvestre
 - Hamilton Jacobi with Fractional Laplacian: Barles, Imbert, Monneau

The problem The result

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Thank you

THANK YOU

The problem The result

Thank you

THANK YOU Bon anniversaire Peter !

イロン スポン イヨン イヨン

3